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Modeling wave generation by borehole orbital vibrator source

Seiji Nakagawa1 and Thomas M. Daley1

ABSTRACT

An orbital vibrator source (OVS), a fluid-coupled
shear-wave source, has many properties useful for cross-
well, single-well, and borehole-to-surface imaging of
both P- (compressional) and S- (shear) wave velocities
of reservoir rocks. To this day, however, only a limited
number of quantitative models have been developed to
explain its properties. In this article, we develop both
2D and 3D models of an OVS, allowing us to exam-
ine source characteristics such as radiation patterns, fre-
quency dependence of wave amplitudes, and guided-
wave generation. These models are developed in the
frequency-wavenumber domain using the partial wave
expansion of the wavefield within and outside the bore-
hole. The models predict many unique characteristics
of an OVS, including formation-property-dependent vi-
brator amplitudes, uniform isotropic S-wave radiation
pattern, and small tube-wave generation.

INTRODUCTION

The orbital vibrator source (OVS) was originally developed
by Conoco in the 1980s to generate S-waves from a fluid-filled
borehole without the direct mechanical coupling of borehole
seismic sources to the borehole wall [see Cole (1997) for a
summary of the background of the orbital source]. There are
two types of borehole OVS: a mechanical source (Figure 1a)
and a solid-state, piezoelectric source (Figure 1b). Currently,
only the mechanical source is used for field applications, so we
will primarily discuss its wave-generation mechanism.

The mechanical source consists of an eccentric mass spin-
ning around the source axis, encased in a cylindrical housing
suspended in the borehole fluid. The centrifugal force induced
by the rotation of the mass moves the whole source in the ra-
dial directions of the borehole, compressing the fluid on one
side of the source and introducing tension on the other side
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(Figure 2). On the borehole wall, these pressure perturbations
generate shear motions that are, in principle, both vertically
(parallel to the borehole, SV) and horizontally (perpendi-
cular to the borehole, SH) polarized. Because of this wave-
generating mechanism, the resulting waves have the same pri-
mary frequency as the spin frequency of the source. Current
mechanical sources can generate waves with useful amplitudes
at frequencies between approximately 70 and 400 Hz. The
same wave-generating effect can be produced using a phased,
circular array of piezoelectric sources around the borehole
axis, generating waves above 4 kHz (e.g., Cole, 1997).

An OVS has many unique and attractive properties as
a fluid-coupled, borehole S-wave source. For example, un-
like conventional borehole sources that generate SV-waves
(e.g., Van Schaack et al., 1995), the orbital source generates
SH-waves with large amplitudes for a wide range of verti-
cal (borehole-parallel) source-receiver offsets. Also, an OVS
tends to generate only small tube waves (borehole-guided
waves primarily supported by the compressional motion of the
borehole fluid) that contaminate body waves used for seismic
imaging (e.g., Cole, 1997). Furthermore, the source allows effi-
cient decomposition of SH-waves and the other wave compo-
nents through the superposition of phase-delayed, circularly
polarized wave motions in both clockwise and counterclock-
wise directions around the borehole (Daley and Cox, 2001).

Although many successful applications of the borehole
OVS have been reported, (Liu et al., 1991; Hardage, 1992;
Liu et al., 2000), the mechanism of wave generation and the
characteristics of waves generated by an OVS are not fully
understood. A quantitative model is still needed to predict
source characteristics such as radiation pattern and tube-wave
generation and for applications such as anisotropy measure-
ments and waveguide characterization of surrounding for-
mations. Among several attempts to model the OVS (e.g.,
Daley and Cox, 2001; Novascone et al., 2002; Reynolds and
Cole, 2002), Dong (1994a, b) and Dong et al. (1995) develop
an analytical source model as input to a boundary element
model. In this approach, the rotary motion of the vibrator is
modeled as a rotating radial force applied to the borehole wall,
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which is subsequently integrated over angular and depth di-
rections of the borehole. The basic principle of Dong’s model
is also used in our study to model the 3D wavefield gener-
ated by the OVS and is extended to examine the amplitudes
of the generated waves as a function of physical source param-
eters and possible generation of higher-order mode waves and
borehole-guided waves.

In this paper, we introduce analytical models to examine
the waves generated by an OVS. A 2D model is first intro-
duced that takes into account the mechanical interaction be-
tween a rigid source body with specified physical parameters
and the surrounding borehole fluid and rock. Subsequently,
a 3D source model is proposed that is conceptually similar

Figure 1. Borehole OVSs. Currently, only the mechanical
OVS (left) is used in the field. The piezoelectric OVS (right)
generates waves by sequentially firing an array of piezoelectric
elements and potentially can generate waves at much higher
frequencies.

Figure 2. A cross section of a mechanical OVS within a bore-
hole. The rotational motion of the source induced by a spin-
ning eccentric mass generates rotating positive and negative
pressure perturbations within the fluid.

to the model used by Kurkjian and Chang (1986) to exa-
mine the waves generated by stationary (nonrotating) multi-
pole sources. The initially unknown source amplitude is de-
termined using the 2D model. These models have an advan-
tage over fully numerical models based on finite-difference
methods and boundary-element methods because they allow
us to analyze the relationship between OVS motions and
borehole-guided waves, including tube waves. Using the intro-
duced model, we examine the radiation pattern of body waves
generated by an OVS and the characteristics of cogenerated
borehole-guided waves.

MODELING METHODS

In this section we derive both 2D and 3D OVS models based
upon series expansion of the wavefield via cylindrical waves.

Two-dimensional representation of an OVS

To determine the relationship between the wavefield gen-
erated by an OVS and physical source parameters, we first ex-
amine a 2D model, assuming an infinitely long, circular, rigid
source along the borehole with a radius r0 and a mass per unit
length Ms (including an eccentric mass Me at a radius re) within
a fluid-filled circular borehole with a radius a. Also, the rock
surrounding the borehole is assumed to be isotropic and ho-
mogeneous. Although such a generalization can be made ea-
sily, we do not assume a casing wall or mud-cake layers on the
fluid-rock interface. The 2D model described here is similar to
the model derived by Reynolds and Cole (2002), who examine
the pressure within the borehole fluid and the power radiated
by the OVS into the surrounding rock.

An OVS is driven by a centrifugal force Fe resulting from
a spinning eccentric mass within the source that is counter-
acted by the sum of fluid pressure Fp and the inertial force of
the source. For stationary source motions with a circular fre-
quency ω, this force equilibrium is written as

Fe + Fp = −(Ms − Me)ω2U, (1)

where U is the rigid body displacement of the source. In
the following derivations, we assume that the magnitude of
the centrifugal force is always given by Mer

′
eω

2, where r ′
e =

re(Ms −Me)/Ms is the radius of rotation for the eccentric mass
around the center of the mass. Since the rotation results in a
π /2 phase shift between the two orthogonal components of the
force and displacement, using complex notations and Carte-
sian coordinates the first term in equation 1 can be computed
by

Fe =
[

Fex

Fey

]
= Mer

′
eω

2

[
1

i

]
e−iωt . (2)

The source displacement is given by

U =
[

Ux

Uy

]
= U0

[
1

i

]
e−iωt . (3)

We need to determine the amplitude and phase of U0 . This is
done by applying a set of boundary conditions on the source-
fluid boundary and the fluid-rock boundary.

To obtain an explicit form of solutions for the wave-
field around the source, we assume that the particle motions
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induced by the source are small (less than 1 mm) and the
source frequency is sufficiently low (below megahertz). As
shown in Appendix A, under these assumptions, the displace-
ment and stress field around the source are acoustic, and the
wavefield can be expressed by a superposition of cylindrical
waves (Appendix B). The assumption for small amplitudes
can be validated afterward by using the source displacement
amplitude obtained in this section with the acoustic approxi-
mation.

First, since the radial component of the source displacement
Ur and the fluid displacement ur must be continuous on the
source-fluid boundary at r = r0,

ur(r = r0) = U0(cos φ + i sin φ)e−iωt = U0e
i(φ−ωt)

=
∞∑

n=−∞

[
AP+

n ∂rH
(1)
n (kP 1r0) + AP−

n ∂rH
(2)
n (kP 1r0)

]
× ei(nφ−ωt)

∴ U0 = AP+
1 ∂rH

(1)
1 (kP 1r0) + AP−

1 ∂rH
(2)
1 (kP 1r0), (4)

where ∂r indicates partial derivative of the function via the ra-
dial variable r. Definitions for the unknown expansion coef-
ficients are given in Appendiex B. This boundary condition
leads to a requirement that all terms n �= 1 be identically zero.
This forces both the displacement and pressure field around
the OVS to be given by the first-order Bessel functions in the
radial direction and by the first harmonic component in the
angular direction. The latter characteristic indicates that OVS
can be viewed as a rotating dipole source that generates ro-
tating distribution of positive and negative pressure perturba-
tions within the fluid on the opposite sides of the circular body
(Figure 2)

Next, the total force from the fluid pressure perturbation p
surrounding the source is computed by

Fp =
∫ 2π

0
(−p)

[
cos φ

sin φ

]
r0dφ

= −ρ1ω
2
∫ 2π

0
�

(s)
P

[
cos φ

sin φ

]
r0dφ

= −ρ1ω
2
[
AP+

1 (ω)H (1)
1 (kP 1r0)

+AP−
1 (ω)H (2)

1 (kP 1r0)
] ∫ 2π

0
ei(φ−ωt)

[
cos φ

sin φ

]
r0dφ,

= −πr0ρ1ω
2
[
AP+

1 (ω)H (1)
1 (kP 1r0)

+AP−
1 (ω)H (2)

1 (kP 1r0)
] [

1

i

]
e−iωt (5)

where the relationship

−p = ρ1c
2
P 1∇2�

(s)
P = −ρ1ω

2�
(s)
P (6)

is used for the 2D P-wave Helmholtz potential �
(s)
P for the

source. From the force equilibrium in equation 1, using equa-
tions 2 and 5,

Mere − πr0ρ1

[
AP+

1 H
(1)
1 (kP 1r0) + AP−

1 H
(2)
1 (kP 1r0)

]
= −(Ms − Me)U0, (7)

where the common term ω2[1 i]T e−iωt is suppressed (T indi-
cates the vector or matrix transposition). On the fluid-rock
boundary at r = a, the radial component of both displace-
ment and stress (pressure) σrr is continuous, and the tangen-
tial (shear) component of stress σrφ vanishes. These conditions
are

ur(r = a) = ∂rH
(1)
1 (kP 1a)AP+

1 + ∂rH
(2)
1 (kP 1a)AP−

1

= ∂rH
(1)
1 (kP 2a)BP

1 + (i/a)H (1)
1 (kS2a)BS

1 , (8)

σrr(r = a) = −ρ1ω
2
[
H

(1)
1 (kP 1a)AP+

1 + H
(2)
1 (kP 1a)AP−

1

]
= ρ2c

2
S2

[
− (

2Dr + k2
S2

)
BP

1 H
(1)
1 (kP 2a)

+ 2iDrB
SH
1 H

(1)
1 (kS2a)

]
, (9)

σrφ(r = a) = 0

= ρ2c
2
S2

[
2iDrB

P
1 H

(1)
1 (kP 2a)

+ (
2Dr + k2

S2

)
BSH

1 H
(1)
1 (kS2a)

]
, (10)

where we introduce an operator

Dr ≡ 1
r

∂

∂r
− 1

r2
= ∂

∂r

1
r
. (11)

The dependence on ei(φ−ωt) of all the terms in equations 8–11
is understood and omitted. The five boundary conditions are
combined to obtain a linear system of equations:




− Ms − Me

πr
ρ1
0

H
(1)
1 (kP 1r0) H

(2)
1 (kP 1r0) 0 0

−1 ∂r H
(1)
1 (kP 1r0) ∂r H

(2)
1 (kP 1r0) 0 0

0 −∂r H
(1)
1 (kP 1a) −∂r H

(2)
1 (kP 1a) ∂r H

(1)
1 (kP 2a) (i/a)H (1)

1 (kS2a)

0 −ρ1ω
2H

(1)
1 (kP 1a) −ρ1ω

2H
(2)
1 (kP 1a) ρ2c

2
S2

(
2Dr + k2

S2

)
H

(1)
1 (kP 2a) −2iρ2c

2
S2Dr H

(1)
1 (kS2a)

0 0 0 2iDr H
(1)
1 (kP 2a)

(
2Dr + k2

S2

)
H

(1)
1 (kS2a)




×




U0

AP+
1

AP−
1

BP
1

BSH
1




.

=




Me

πr
ρ1
0

re

0

0

0

0




(12)

Equation 12 can easily be solved analytically. The solution for
U0 can be expressed as

U0 =
(

−Me

Ms

re

)
× 1

1 − πr0ρ1

Ms − Me

d1

d2

, (13)

where[
d1

d2

]
≡ Hr0 (Ha)−1

[
c1

c2

]
, (14)

Ha ≡
[

H
(1)
1 (kP 1a) H

(2)
1 (kP 1a)

∂rH
(1)
1 (kP 1a) ∂rH

(2)
1 (kP 1a)

]
, (15)

Hr0 ≡
[

H
(1)
1 (kP 1r0) H

(2)
1 (kP 1r0)

∂rH
(1)
1 (kP 1r0) ∂rH

(2)
1 (kP 1r0)

]
, (16)
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c1

c2

]

≡




ρ2

ρ1k
2
S2

(
2Dr + k2

S2

)
H

(1)
1 (kP 2a) − ρ2

ρ1k
2
S2

2iDrH
(1)
1 (kS2a)

∂rH
(1)
1 (kP 2a)

i

a
H

(1)
1 (kS2a)




×
[ (

2Dr + k2
S2

)
H

(1)
1 (kS2a)

−2iDrH
(1)
1 (kP 2a)

]
. (17)

The term within parentheses in equation 13 is the displace-
ment of an OVS in vacuum (or air), modified by the following
term containing rock and borehole fluid properties.

For the special case of an OVS within an infinite fluid, the
coefficients for waves propagating toward the source AP−

1 and
the waves within the rock BP

1 and BSH
1 can be set to zero.

Therefore, equation 12 reduces to
−Ms − Me

πr0ρ1
H

(1)
1 (kP 1r0)

−1 ∂rH
(1)
1 (kP 1r0)




[
U∞

0

AP+
1

]
=


 Me

πr0ρ1
r ′
e

0


,

(18)

which results in

U∞
0 =

(
−Me

Ms

re

)
× 1

1 − πr0ρ1

Ms − Me

H
(1)
1 (kP 1r0)

∂rH
(1)
1 (kP 1r0)

(19)

and the source potential

�
(s)
P = AP+

1 H
(1)
1 (kP 1r)ei(φ−ωt)

= U∞
0

∂rH
(1)
1 (kP 1r0)

H
(1)
1 (kP 1r)ei(φ−ωt). (20)

This result is used to determine the amplitude of a 3D OVS in
the next section.

In Figure 3, the source displacement amplitude is shown as a
function of frequency for sources within vacuum, infinite fluid,

Figure 3. A comparison of source displacements for OVSs sus-
pended within vacuum (air), infinite water, and a fluid-filled
borehole surrounded by rock. The baseline source and mate-
rial parameters are given in Table 1.

and borehole fluid surrounded by rock. The model parameters
used in this example are shown in Table 1. The displacement
amplitudes of the source for the frequencies of our interest
(70 ∼ 400 Hz) are nearly constant. Also, the amplitude of the
sources within an infinite fluid and a finite-diameter borehole
are reduced from a source within a vacuum as a result of the
impedance effect of the surroundings.

Three-dimensional representation of OVS

Unlike the 2D case, the 3D geometry of an OVS is dif-
ficult to model analytically. As an alternative, we represent
the source by a circular array of phase-delayed point dilation
(or volume displacement) sources located around the bore-
hole axis. This representation of a borehole source is simi-
lar to Kurkjian and Chang’s (1986) model used to examine
waves generated by fluid-coupled, multipole borehole sources
for well logging. Phase delays between the individual sources
of Kurkjian and Chang’s model are either zero or π radians.
In contrast, phase delays within the point-source array for the
OVS change continuously from zero to 2π (counterclockwise
spin) or zero to –2π (clockwise spin). Therefore, collectively,
this source array does not change the net volume of the fluid
within the borehole as seen for the physical, 2D source.

Using the partial-wave expansion technique, the radiation
and scattering of the waves generated by an OVS can be exam-
ined analytically using the frequency-wavenumber integration
technique and solved numerically by the discrete wavenum-
ber method. A single time-harmonic volume source with a
magnitudeV0(ω), located at the center of an infinite acoustic
medium, generates a wavefield with a single scalar Helmholtz
potential (e.g., Lee and Balch, 1982; Kurkjian and Chang,
1986) given by

−V0(ω)
4πR

eiω(R/cP 1−t)

= − iV0(ω)
8π

∫ +∞

−∞
H

(1)
0

(
kP 1
r r ′)ei(kzz−ωt)dkz, (21)

where R is the source-receiver distance, kP 1
r = √

(ω/cP 1)2 − k2
z

with kz the z-direction (borehole-parallel) wavenumber, and r ′

is the projection of R onto the plane perpendicular to the z- or
borehole axis. In expression 21, V0 has a dimension of [vol-
ume/length] for a single circular array of point sources (1D ar-
ray) and [volume/length2] for circular arrays also distributed
in the z-direction (2D array). Throughout the rest of this ar-
ticle, the positive and negative sign conventions are used for
wavenumbers and frequencies, respectively, as in equation 21.
Also, since wavenumber components are examined individu-
ally, the source potential term is

sV0 = − iV0(ω)
8π

H
(1)
0

(
kP 1
r r ′)ei(kzz−ωt). (22)

We represent an OVS, located on the borehole axis and
with a vibration frequency ω, as a series of point-volume
sources located at a radius r= r0 around the borehole axis
(Figure 4). Each source, located at an angular coordinate θ

measured from the x-axis, has a phase delay exp(iθ), resulting
in a constant phase rotating around the borehole axis at a spin
frequency ω.
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To compute the superimposed effect of the off-center point
sources, we first examine the waves generated by a single point
source at (r0, θ). The origin of the coordinate in equation 22
is shifted along the x ′axis by r0 (Figure 4b). This involves a
coordinate transform via

r cos(φ − θ) = r0 + r ′ cos ψ, (23)

r sin(φ − θ) = r ′ sin ψ, (24)

where r and φ are the radial and angular coordinates of the
receiver and where ψ is the angular coordinate of the receiver
around the source, measured from the x ′axis. Equations 23
and 24 imply

r ′ =
√

r2 + r2
0 − 2rr0 cos(φ − θ). (25)

Using equation 25, we express the potential given by a sin-
gle Hankel function around the source via an infinite series of
partial waves using the relationships

H
(1)
0 (kP 1

r r ′) = H
(1)
0

(
kP 1
r

√
r2 + r2

0 − 2rr0 cos(φ − θ)
)

=
∞∑

n=−∞

{
Jn

(
kP 1
r r0

)
H

(1)
n

(
kP 1
r r

)
(if r > r0 ≥ 0)

Jn

(
kP 1
r r

)
H

(1)
n

(
kP 1
r r0

)
(if r0 > r ≥ 0)

}

× exp in(φ − θ). (26)

The overall effect of the phase-delayed sources (Figure 4c)
is computed by introducing equation 26 into equation 22 and
integrating the resulting expression with a phase-delay factor
exp(iθ) over the values of the angle 0 < θ < 2π . For reasons
that will become clear shortly, we generalize this delay fac-
tor as exp(imθ)(m = . . . , −2, −1, 0, 1, 2, . . .). An OVS with
these delay factors can be viewed as a generalized OVS with
multiple cycles of pressure oscillation around the source. The
angular integration with these delay factors involves the or-
thogonality relationship∫ 2π

0
ein(φ−θ)eimθdθ = 2πeinφδm,n, (27)

where δm,n is the Kronecker delta. With relationship 27, the
source potential for a 1D array is given by

�
(s)
P (z) =

∫ 2π

0
sV0e

imθ r0dθ

= − iV0(ω)
8π

r0e
i(kzz−ωt)

Table 1. Model parameters.

Baseline material parameters Source/borehole parameters

Fluid density ρ1 1000 g/cm3 Source length L 61.0 cm
Fluid P velocity cP 1 1460 m/s Source radius r0 5.08 cm
Rock density ρ2 2100 g/cm3 Source mass per length Ms 14.9 kg/m
Rock P velocity cP 2 3000 m/s Eccentric mass radius re 7.29 mm
Rock S velocity cS2 1731 m/s Eccentric mass per length Me 1.62 kg/m

Borehole diameter a 7.62 cm

×
∞∑

n=−∞

{
Jn

(
kP 1
r r0

)
H

(1)
n

(
kP 1
r r

)
(if r > r0 ≥ 0)

Jn

(
kP 1
r r

)
H

(1)
n

(
kP 1
r r0

)
(if r0 > r ≥ 0)

}

×
∫ 2π

0
ein(φ−θ)eimθdθ

= − iV0(ω)
4

r0

×
{

Jm

(
kP 1
r r0

)
H

(1)
m

(
kP 1
r r

)
(if r > r0 ≥ 0)

Jm

(
kP 1
r r

)
H

(1)
m

(
kP 1
r r0

)
(if r0 > r ≥ 0)

}

× ei(mφ+kzz−ωt). (28)

An OVS with a finite length (i.e., 2D array) can be modeled
by the superposition of the above sources distributed along
the borehole axis (e.g., Dong, 1994a,b). For vibrator length
L, equation 28 is integrated for sources distributed along the
borehole axis, resulting in

�
(s)
P (z;L) =

∫ +L/2

−L/2
�

(1)
P (z − ζ )dζ

= �
(s)
P (z)

∫ +L/2

−L/2
exp(−ikzζ )dζ = �

(s)
P (z)

× 2
kz

sin
(

kzL

2

)
= �

(s)
P (z)Lsinc

(
kzL

2

)
,

(29)

which is the source potential for the 1D array modulated by
a sinc (sampling) function. Note that the dimension of the
source potential differs between the single array and the dis-
tributed array (finite-length source).

Equation 28 indicates that the phase delay among the point
sources constituting an OVS selects a single term out of the in-
finite series of the partial-wave expansion. From equation 28,
a ring-shaped expansion source (e.g., Dong et al., 1995) can
be viewed as a generalized orbital source of the order m =
0 and the currently used mechanical OVS of the order m= 1.
Pressure distribution around the generalized OVSs is shown
schematically in Figure 5. These sources can be viewed as the
multipole sources used for S-wave borehole logging (Chen
and Eriksen, 1991) that rotate around the borehole axis. Also
note that the superposition of the two OVSs of the same order
but with opposite spin directions results in

�
(s)
P (m) + �

(s)
P (−m)

= − iV0(ω)
2

r0

{
Jm

(
kP 1
r r0

)
H

(1)
m

(
kP 1
r r

)
(if r > r0 ≥ 0)

Jm

(
kP 1
r r

)
H

(1)
m

(
kP 1
r r0

)
(if r0 > r ≥ 0)

}

cos(mφ)ei(kzz−ωt), (30)

which is the stationary (nonrotating)
multipole source solution examined
by Kurkjian and Chang (1986).

For the m = 1 source, it is possible
to relate self-consistently the point-
volume source amplitude V0(ω) to the
physical source parameters as we did
for the 2D OVS. However, the source
amplitude is not only a function of
source parameters but is also depen-
dent upon the borehole geometry and
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material properties of the surrounding fluid and rock. As an
approximation, we derive an expression of V0(ω) for the OVS
in an infinite fluid as a function of source parameters and fluid
properties. This is done by making the length of the source
infinitely long and also integrating for all wavenumbers:

�
(s)
P,2D =

∫ +∞

−∞
lim

L→∞
�

(1)
P (z;L)dkz

=
∫ +∞

−∞
�

(s)
P (z) lim

L→∞
sin(kzL/2)

kz/2
dkz

=
∫ +∞

−∞
�

(s)
P (z)2πδ(kz)dkz

= −V0(ω)
iπr0

2
J1(kP 1r0)H (1)

1 (kP 1r)ei(φ−ωt), (31)

where δ(kz) is the Dirac delta function. By comparing equa-
tions 31 and 20,

V0(ω) = 2iU∞
0

πr0J1(kP 1r0)∂rH
(1)
1 (kP 1r0)

, (32)

where U∞
0 is the complex source amplitude in equation 19 con-

taining physical source parameters.
For 3D problems, the boundary conditions used to solve for

the unknown coefficients AP
n , BP

n , BSH
n , andBSV

n in the series
expansions of displacement in Appendix B are the continu-
ity of radial displacement and normal stress (pressure) and
two vanishing shear-stress components on the borehole wall.
These four conditions can be applied to obtain a linear system
of equations for the four coefficients for individual modes n.
Note that an OVS of the order m can excite only the partial

Figure 4. Representation of a 3D OVS using point volumetric
sources. A single-point volume source (left) is first shifted to
the radius of the OVS. Subsequently, the source potentials for
these shifted point sources (center) are superimposed with a
phase shift that changes continuously around the OVS.

Figure 5. Distribution of fluid pressure perturbation around
OVSs with different orders. Except for the zero-order source
(monopole), these sources can be viewed as rotating multipole
sources (order m).

waves with n = m. The resulting linear system of equations is


−∂P 1 ∂P 2 im ikza∂S2

(1/µ2)ρ1ω
2a2 −(λ2/µ2)k2

P 2a
2 + 2∂2

P 2 2im(−1 + ∂S2) 2ikza∂2
S2

0 im(−2 + ∂P 2) + im∂P 2 −∂2
S2 + ∂S2 − m2 −2mkza(−1 + ∂S2)

0 2ikza∂P 2 −mkza ((kS2
r a)2 − (kza)2)∂S2




×




Jm(kP 1
r a)

H
(1)
m (kP 2

r a)

H
(1)
m (kS2

r a)

H
(1)
m (kS2

r a)




×




AP
m

BP
m

BSH
m

BSV
m




≡ Mm




AP
m

BP
m

BSH
m

BSV
m




= sm, (33)

where sm is the source term computed from equation 28 as

sm = − iV0(ω)
4

r0Jm

(
kP 1
r r0

)



∂P 1

−ρ1a
2ω2/µ2

0

0




H (1)
m

(
kP 1
r a

)
.

(34)

In equations 33 and 34, the symbols ∂P and ∂S , with subscript 1
denoting inside the borehole and subscript 2 denoting outside,
are defined as

∂P,SZm ≡ (
kP,S
r a

) dZm(z)
dz

∣∣∣∣
z=k

P,S
r a

, (35)

where Zm are Bessel functions of the appropriate kind. Also
note that equations 21–23 are scaled by the borehole radius
a. These equations can be constructed and solved for a given
combination of wave frequency and z-direction wavenumber.
The displacements are computed by introducing the resulting
potentials into equations B-2, B-3, and B-4.

EXAMPLES AND DISCUSSIONS

In this section we show several examples from the predic-
tions made by the models developed in the preceding section.

Comparison of 2D physical and fictitious OVS

We derive the 3D OVS model by imposing a radial outgo-
ing wavefield within the borehole fluid (a fictitious source).
However, this approach does not account for the interaction
of the source and the waves reflected by the borehole wall,
as would be the case for the true source shown in Figure 2.
To estimate the error introduced by this approximation, we
compare the waves generated by a physical source in the sec-
tion “Two-Dimensional Representation of an OVS” and the
waves generated by the fictitious source, which are computed
by embedding the 2D outgoing wavefield from an OVS within
an infinite fluid.

For the fictitious source, the wavefield within the borehole
is given by a superposition of the source wavefield and the
acoustic wavefield that is nonsingular at the center of the bore-
hole, forcing the use of the Bessel function of the first kind.
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The system equation to be solved is


−∂rJ1(kP 1a) ∂rH
(1)
1 (kP 2a) (i/a)H (1)

1 (kS2a)

−ρ1ω
2J1(kP 1a) ρ2c

2
S2

(
2Dr + k2

S2

)
H

(1)
1 (kP 2a) −2iρ2c

2
S2DrH

(1)
1 (kS2a)

0 2iDrH
(1)
1 (kP 2a)

(
2Dr + k2

S2

)
H

(1)
1 (kS2a)




×


 AP

1

BP
1

BSH
1


 =




∂rH
(1)
1 (kP 1a)

ρ1ω
2H

(1)
1 (kP 1a)
0


 × U∞

0

∂rH
(1)
1 (kP 1a)

. (36)

Comparing the solutions from equations 36 and 12, the accu-
racy of the approximation can be evaluated.

Figure 6 compares of P- and S-wave amplitudes in the rock
at a receiver located 100 m away from the source. The model
parameters are shown in Table 1. This example illustrates that
the amplitude of the waves from using the fictitious source is
5% to 10% smaller than the physical source for up to several
kilohertz.

Driving-point impedance effect of a 2D OVS

As we saw in Figure 3, the amplitude of the source motion
is dependent on the physical properties of surrounding rocks.
This indicates that the source motion of an OVS tool itself
can be used for borehole logging of rock properties. This idea
has been introduced and both theoretically and experimen-
tally examined by Novascone et al. (2002), who term this the
driving-point impedance effect.

Using the 2D OVS model in equation 13, we can perform
a series of sensitivity studies for the rock properties (density,
P- and S-wave velocities). Again, using the baseline proper-
ties in Table 1, the amplitudes of the source as a function of
wave frequency and rock properties are shown in Figure 7.
From Figure 7a we can see that the source motion is practi-
cally insensitive to the formation P-wave velocity for the fre-
quencies of our interest (below a few kilohertz). In contrast,
the source motion shows appreciable sensitivity to the density
and S-wave velocity (Figures 7b and 7c). However, the sensi-
tivity generally is very small for frequencies below the current

Figure 6. A comparison of radial (primarily attributable to
P-waves) and angular (primarily attributable to S-waves) dis-
placements for the physical and fictitious sources measured
100 m away from the 2D OVSs. The fictitious sources some-
what underestimate the amplitudes of the generated waves.

Figure 7. Parametric study of the 2D OVS displacement us-
ing the baseline properties shown in Table 1. For a practical
range of material properties, an OVS shows some sensitivity
to formation density and S-wave velocity but little sensitivity
to P-wave velocity. (a) P-wave sensitivity; (b) S-wave sensitiv-
ity; (c) density sensitivity.
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Figure 8. Radiation pattern of waves generated by OVSs of or-
der (a) m = 0 (monopole), (b) m = 1 (dipole), and (c) m = 2
(quadrupole). The values P(xz) and S(xz) indicate displace-
ment components of P- and S-waves within the plane parallel
to the borehole; S(θ) indicates the S-wave amplitude normal
to the borehole. The value P(xz) closely equals the P-wave
amplitude, and S(xz) and S(θ) are the SV- and SH-wave am-
plitudes, respectively.

maximum operational frequency of 400 Hz. For very small
S-wave formation velocities, however, the weak (attenuated)
resonance of the system shifts to lower frequencies, causing
significant changes in the source amplitude. As the formation
S-wave velocity approaches zero, the OVS source amplitude
increases significantly for the entire frequency band.

Radiation pattern of a 3D OVS

Using the discrete wavenumber method, the displacement
wavefield generated by OVSs of different orders can be com-
puted to study the radiation characteristics of the source. The
following examples are given for the parameters in Table 1,
with a frequency of 200 Hz and a source-receiver distance of
100 m. The point-volume source amplitude (V0) of all sources
is given by equation 32, even for sources on the order of
m �= 1. Also, for the stability of the wavenumber integration,
we assume small attenuation in the rock (seismic quality factor
Q = 500) and rather large attenuation in the fluid (Q = 100).
The large attenuation is used in the fluid to suppress the tube
waves, and this has very small effect on the radiation pattern
of the body waves.

The zero-order (m = 0) OVS is a ring-shaped explosion
source (monopole); the radiation patterns of the generated
waves are very similar to those of a single-point volume source
located on the borehole axis (e.g., Lee and Balch, 1982). Am-
plitudes of the displacement in a single radial plane are shown
in Figure 8a as a function of the dip angle  from the source
plane. Because of the angular symmetry of the source around
the borehole axis, SH-waves are not generated. From the
figure we can see that this type of source generates P-waves
[shown as P(xz) in the figure] that have a radiation pattern
with a wide angular coverage in the vertical directions. The
source also generates SV-waves [shown as S(xz)] with signif-
icant amplitudes. However, the amplitude of the SV-waves
diminishes to zero in the zero vertical-offset directions (hor-
izontal directions), which is not desirable for crosswell mea-
surements of waves. This type of source also generates large
tube waves, as shown in the plot.

In contrast, the currently used OVS (m = 1) generates sig-
nificantly large SH-waves compared to P-waves, shown as S(θ)
and P(xz) in Figure 8b. The overall magnitude of the waves,
however, is much smaller than the zero-mode source because
dipole sources are less effective than monopole sources. The
radiation pattern of the SH-waves is nearly spherical and lacks
the nodal plane in the  = 0 direction, as seen for the m = 0
case. This lack of an S-wave blind spot makes an OVS an ideal
borehole source, particularly for crosshole surveys. Further,
no significant amplitude of borehole-guided waves is seen near
the borehole. The large SH-waves in the horizontal direction
are also predicted by Dong (1994b) and observed in the field
(e.g., Hardage, 1992).

For higher-order modes, the amplitudes of the waves gen-
erated by the vibrator become increasingly smaller. However,
SH-waves are always generated by the sources, and their rel-
ative amplitudes compared to the P-waves are significantly
large. Radiation patterns for modes greater than one main-
tain good coverage over a wide range of vertical offset angles
except for the angles near borehole-parallel directions. An ex-
ample for the second (m = 2) mode is shown in Figure 8c.
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Borehole-guided waves

An OVS also generates guided waves along the borehole.
To use an OVS for logging applications, it is important to sup-
press the borehole-guided waves for reliable S-wave measure-
ments. Among conventional, nonrotating sources, multipole
sources have been shown to be particularly effective in reduc-
ing guided-wave noises in S-wave measurements (Chen and
Eriksen, 1991). This has a strong implication for the guided-
wave generation by an OVS that is essentially a rotating mul-
tipole source.

For the mth-order OVS source, an infinite series of guided
waves is generated that is characterized by the dispersion

Figure 9. Dispersion of fundamental-mode, borehole-guided
waves generated by mth-order OVSs. Velocities are normal-
ized by the fluid P-wave velocity; m = 0 corresponds to the
tube waves. For higher-order sources (m > 0), the guided
waves have cutoff frequencies well above the frequencies used
in the field.

Figure 10. Borehole-wall mode shapes of borehole-guided
waves (fundamental modes) for generalized OVSs of order
(a) m = 0, (b) m = 1, and (c) m = 2. To compare the mode
shapes of propagating guided waves, a high, single frequency
of 15 kHz was selected. Light and dark colors indicate low and
high fluid pressure on the wall. Because of the rotation of the
source, the higher-order modes have a twisted mode shape.

equation

det[Mm(kz, ω)] = 0, (37)

where Mm is the matrix given by equation 33. Similar to the
body waves, an OVS of order m can generate only the guided
waves of order m. These equations are the dispersion equa-
tions of borehole-guided waves of arbitrary radial and circum-
ferential orders. For the case m = 0, equation 37 becomes
the dispersion equation for the borehole-guided waves stud-
ied by Biot (1952); the equation has an infinite number of so-
lutions. For m = 0, the fundamental mode of the solutions is
known as a tube wave which, for borehole fluids with P-wave
velocity lower than the surrounding rock’s S-wave velocity,
exists at all frequencies and propagates at velocities less than
the P-wave velocity of the borehole fluid. For m ≥ 1, equa-
tion 37 also generates an infinite number of solutions for
each m. However, these waves do not propagate (complex-
valued solution) at low frequencies. As an example, the phase-
velocity dispersion of the fundamental modes of order m = 0,
1, 2, and 3 is shown in Figure 9 (for the properties shown in
Table 1).

A unique property of the orbital vibrator-generated,
borehole-guided waves with higher circumferential orders
(m ≥ 1) is that the mode shapes of the tube waves rotate
around the borehole axis as the wave propagates along the
borehole. Because of this, the mode shapes have a twisted ap-
pearance around the borehole axis (Figure 10). The dispersion
characteristics of these guided waves, however, are the same
as the guided waves generated by conventional sources (e.g.,
Paillet and White, 1982) because dispersion equation 37 is ir-
relevant to the source term.

An important consequence of the mode-selective property
of an OVS is that, except for the m = 0 case, body waves are
generated below the cutoff frequency of the related guided
waves. This should improve the quality of body-wave seismo-
grams measured using an OVS by reducing the noise origi-
nated by borehole-guided waves. However, this may not be
the case when the polar symmetry in the geometry of the bore-
hole and the vibrator body is broken as a result of the het-
erogeneity in the surrounding rocks, a wash-out zone around
the borehole, and the shifted center of the vibrator axis off
the borehole axis; an imperfect mode selection generates tube
waves. Although the effect of misalignment can be examined
analytically (e.g., Nakagawa et al., 2003), the effect of hetero-
geneity must be examined using numerical simulations.

CONCLUSIONS

In this article we develop both 2D and 3D semianalytical
models for a fluid-coupled P- and S-wave source known as an
OVS. A 2D OVS model is developed using physical source pa-
rameters following the technique developed by Reynolds and
Cole. The 3D model is developed by envisioning the source as
single and distributed arrays of point sources, an extension of
Dong’s model.

From the model derivation, we can see that the funda-
mental mechanism of S-wave generation by an OVS can be
modeled by converting of P-waves into S-waves on the bore-
hole wall. Although an OVS is a fluid-coupled source, the 2D
model indicates that the source motion itself is insensitive to
P-wave acoustic impedance of the formation yet is somewhat
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dependent on the S-wave impedance. This can be explained by
the dipole (or multipole) nature of the source because the net
volume change within the borehole fluid is zero — the same
mechanism utilized by multipole S-wave logging tools. The 2D
source model is also useful for examining the relationship be-
tween source parameters and amplitudes of generated waves.
However, the relationships may not be accurate quantitatively
because the model assumes an infinite source length.

Instead of solving a physical 3D source problem that can
be quite complicated mathematically, we use a relatively sim-
ple point-source array representation of an OVS source. Our
3D source predicts very uniform, spherical radiation patterns
of SH-waves generated by an OVS, which suggests the source
can be used for wide-angle crosshole, vertical seismic profiling,
and single-hole seismic measurements. Further, the theory in-
dicates that, under ideal conditions, an OVS should gener-
ate no borehole-guided waves at frequencies used in the field.
This is not usually the case for real measurements where an
OVS is located off the borehole axis and heterogeneities are
present in the formation surrounding the borehole. The ef-
fect of heterogeneity and the background formation structures
and anisotropy are difficult to examine using our semianalyti-
cal model, and this needs to be studied numerically. However,
our model provides clear physical insight into the mechanism
of wave generation and is a tool to quickly estimate the ampli-
tude and radiation of waves generated by an OVS.
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APPENDIX A

JUSTIFICATION FOR USE OF THE
ACOUSTIC-WAVE EQUATION

IN BOREHOLE FLUIDS

The Navier-Stokes equation for wave propagation within a
borehole fluid is

ρf

(
∂

∂t
v + v · ∇v

)
= µf ∇2v − ∇p

+ (µf /3 + λf )∇(∇ · v), (A-1)

where ρf is the fluid density and where µf and λf are the shear
and bulk viscosity. By taking the divergence and time deriva-
tion of equation A-1 and also from the constitutive relation-
ship

∇ · v = − 1
Kf

∂p

∂t
, (A-2)

we obtain

ρf

∂2

∂t2
(∇ · v) + ρf

∂

∂t
∇ · (v · ∇v)

= Kf ∇2(∇ · v) + (4µf /3 + λf )
∂

∂t
∇2(∇ · v). (A-3)

Here, Kf is the fluid bulk modulus. We first compare the two
terms on the right-hand side of the equation. By replacing the
time derivative by –iωt , the relative magnitude of the second
term with respect to the first term is

(4µf /3 + λf )ω
Kf

= 4/3 · 10−3 + 2.8 · 10−3

2.25 × 109

×ω = (1.15 × 10−11) × f. (A-4)

Therefore, the viscosity term can be neglected for all frequen-
cies of interest for our problems (up to several kilohertz).

Next, we evaluate the relative magnitude of the second term
(nonlinear convection term) of the left-hand side of the equa-
tion against the first term. Here, as an approximation, we re-
place the nabra operator ∇ by the inverse of a characteristic
length, e.g., the source radius. Using the approximate source
displacement u= 0.5 mm from the 2D analysis yields∣∣∣∣ρf ω∇ · (v · ∇v)

ρf ω2(∇ · v)

∣∣∣∣ ∼ u

a
= 0.5 × 10−3

50 × 10−3
= 0.01 
 1.

(A-5)

Therefore, the nonlinear term can be neglected.
Returning to the original equation without the nonlinear

and viscosity terms, by applying the divergence to the equa-
tion and using the constitutive equation,

ρf

Kf

∂2

∂t2
p = ∇2p. (A-6)

This is the acoustic-wave equation.

APPENDIX B

PARTIAL-WAVE EXPANSION OF SOLUTIONS
IN CYLINDRICAL COORDINATES

The wavefield outside a borehole can be computed from
three scalar displacement potentials �P , �SH , and �SV . The
components of displacement are computed using these poten-
tials as (e.g., Kurkjian and Chang, 1986)

u = ∇�P + ∇ × (ẑ�SH ) + ∇ × ∇ × (ẑ�SV ). (B-1)

In cylindrical coordinates, the components of the displace-
ment are

ur = ∂�P

∂r
+ 1

r

∂�SH

∂φ
+ ∂2�SV

∂r∂z
, (B-2)

uφ = 1
r

∂�P

∂φ
− ∂�SH

∂r
+ 1

r

∂2�SV

∂φ∂z
, (B-3)

uz = ∂�P

∂z
− ∂2�SV

∂r2
− 1

r

∂�SV

∂r
− 1

r2

∂2�SV

∂φ2
. (B-4)

For the acoustic fluid within a borehole, only the first term in
equation B-1 is used, i.e., u = ∇�P . For 2D problems, the
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third term is not used. The displacement potentials individu-
ally satisfy Helmholtz equations and can be expressed in series
form as

�
(1)
P =

∞∑
n=−∞

AP
n (kz, ω)Jn

(
kP 1
r r

)
ei(nφ+kzz−ωt), (B-5)

�
(2)
P =

∞∑
n=−∞

BP
n (kz, ω)H (1)

n

(
kP 2
r r

)
ei(nφ+kzz−ωt), (B-6)

�
(2)
SH =

∞∑
n=−∞

BSH
n (kz, ω)H (1)

n

(
kS2
r r

)
ei(nφ+kzz−ωt), (B-7)

�
(2)
SV =

∞∑
n=−∞

a · BSV
n (kz, ω)H (1)

n

(
kS2
r r

)
ei(nφ+kzz−ωt) (B-8)

for 3D problems. The radius of the borehole a is included in
equation B-8 to match the dimension of the coefficients. The
superscripts 1 and 2 on the potentials denote inside and out-
side the borehole, respectively, which should not be confused
with the superscripts on the Bessel (Hankel) functions. Also,
the superscripts P 1, P 2, and S2 indicate P-waves inside and
outside the borehole and the S-wave outside the borehole.
The values kP 1

r , kP 2
r , and kS2

r are the radial components of the
wavenumbers. Since the wavefield within the borehole is reg-
ular and the field outside the borehole is unbounded, Bessel
functions of the first kind and Hankel functions of the first
kind are used for inside and outside the borehole, respectively.

For the 2D problem with the physical source, equations
(B5–B7) become

�
(1)
P =

∞∑
n=−∞

[
AP+

n (ω)H (1)
n (kP 1r) + AP−

n (ω)H (2)
n (kP 1r)

]
× ei(nφ−ωt), (B-9)

�
(2)
P =

∞∑
n=−∞

BP
n (kz, ω)H (1)

n (kP 2r)ei(nφ−ωt), (B-10)

�
(2)
SH =

∞∑
n=−∞

BSH
n (kz, ω)H (1)

n (kS2r)ei(nφ−ωt), (B-11)

where kP 1 ≡ ω/cP 1, kP 2 ≡ ω/cP 2, and kS2 ≡ ω/cS2. In this
case, since the wavefield within the borehole fluid is bounded
by the borehole wall as well as the source surface, both kinds
of Hankel functions are used in equation B-9.

The stress components are obtained by first computing
strain components from equations B-2, B-3, and B-4 and then
applying Hooke’s law to the strains.
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